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The quantum Hall state at the filling fraction v=5/2 is the leading candidate to be a physical system
supporting excitations with non-Abelian braid statistics. While a direct experimental evidence for the latter is
still absent, recent experiments by Radu et al. [I. P. Radu, J. B. Miller, C. M. Marcus, M. A. Kastner, L. N.
Pfeiffer, and K. W. West, Science 320, 899 (2008)] yielded results favoring some previously proposed non-
Abelian theories over Abelian ones. Here, we systematically investigate candidate theories of the quantum Hall
edge at the filling fraction v=5/2. We find a set of candidate theories, both Abelian and non-Abelian, which are
equally consistent with the experimental data and cannot therefore be distinguished in the quasihole tunneling
experiment only. We discuss what experimental information may be useful in resolving the ambiguity.
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It was pointed out long ago! that in a (2+1)-dimensional
universe there might exist quantum particles, anyons, obey-
ing neither Fermi nor Bose statistics. For all its elegance this
result did not have any obvious relations to the nature, where
fundamental particles are fermions and bosons. The discov-
ery of the fractional quantum Hall effect revolutionized this
view—it was found that anyons may emerge as excitations
(quasiparticles) above a strongly correlated state of a many-
electron system. Further on, Wen? and Moore and Read?
brought forward arguments attempting to explain the v
=5/2 conductance plateau as a manifestation of a strongly
correlated state supporting excitations with non-Abelian
braid statistics. Not only is this possibility fascinating from
the theoretical point of view, it also holds promise for con-
crete implementations of topologically protected quantum
algorithms.* Today, the »=5/2 quantum hall edge (QHE)
state remains the most promising candidate to be the non-
Abelian state.

Notwithstanding persisting interest of the community to
the problem, the crucial properties of the v=5/2 state do,
however, remain hypothetical. There is no controllable mi-
croscopic theory of the system due to the complexity of the
Hamiltonian of electrons in a quantizing magnetic field. At
the same time exact numerical studies do not allow one to
make fully reliable statements about macroscopically large
systems. The decisive word about the nature of the v=5/2
state must therefore come from experiments. A natural target
for experimental investigations is the edge of an incompress-
ible quantum Hall fluid supporting gapless excitations.

In a recent experiment,> properties of the v=5/2 state
were investigated by means of a transport measurement in a
quantum Hall sample with a narrow constriction. The param-
eters of the constriction were tuned in such a way that it
served as a weak link between two v=5/2 quantum Hall
edges. The electrical conductance of the constriction exhibits
a zero-bias peak, whose scaling with temperature is consis-
tent with the assumption that the current is due to weak
tunneling of fractionally charged quasiparticles. By fitting
the shape of the zero-bias conductance peak to the predic-
tions of a model-independent theory® at five different tem-
peratures, the experimentalists produced a two-parameter
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confidence map for the electric charge e¢* and the scaling
dimension g of the tunneling quasiparticle.

In order for these data to be useful in unveiling the nature
of the v=>5/2 state, it is crucial to the values of ¢* and g in
various possible effective theories. In this Brief Report,
rather than relying on prejudices based on aesthetic, micro-
scopic, or numerical arguments to sift out candidate theories,
we present a list of theories satisfying a certain minimal set
of physical assumptions. We show that, although the knowl-
edge (within experimental errors) of the two parameters of
Ref. 5 narrows down the list of candidate effective theories
significantly, it is impossible to reveal their non-Abelian na-
ture based exclusively on these tunneling data. Based on our
analysis, we discuss which additional experiments may help
to achieve this goal and test the crucial predictions of the
theory of QHE.

General principles. We first recall some general principles
underlying the effective-field theory of the quantum Hall
edge (for details, see Refs. 7-9) and then focus on their ap-
plication to the v=>5/2 state. We assume that the effective
theory of a QHE is a chiral conformal field theory (CFT) that
meets the following requirements imposed by fundamental
properties of the system.

(A) The CFT at the edge supports a chiral current J that is
not conserved due to the inflow of a Hall current from the
incompressible bulk. It is convenient to use a chiral Bose
field ¢ related to the charge density J° by

@)=, (1)

where x is a natural parameter along the edge and ¢ satisfies
the commutation relations

[(x), p(x")] =i sign(x - x'). 2)

The factor \v in Eq. (1) is dictated by the electric charge
conservation (anomaly cancellation) in the system.

(B) Since microscopically the system is composed of
electrons, the chiral CFT must contain a local operator ¢, of
unit charge representing the electron in the effective theory

[Jo(x), ()] == 0lx = y) (). 3)
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TABLE 1. The charges ¢* and the scaling dimensions g of the most relevant tunneling operators in N
=2,3 theories. The parameters of the K matrices defined in Eq. (8) are shown by the symbols (Z) for N=2

ay,axb

and (1],13,13 ), for N=3.

1 -1 2,152 1,252 1,1;1 4,0;—1 3,1;-1 2,2;-1
K () (s) (333) (335) (3s5) (555) (555) (555)
* 1 1 1 1 1 1 1 1
¢ q 7 2 1 8 1 1 g
3 S 1 11 7 9 1 7
8 8 24 2 2 32 40 1 24
(C) Fundamentally, any correlation function of the theory y=ev? (5)

containing an electron-operator insertion must be a single-
valued function of the position of the insertion. In the
effective-theory language this means that ¢, must be local
with respect to all primary fields of the CFT.

A physically plausible effective theory should satisfy cer-
tain minimality conditions. Complicated theories with very
rich spectra of quasiparticles, large central charge, and large
scaling dimension of electron operators may be unstable,
e.g., against the formation of a Wigner crystal.'”

In connection with the v=5/2 state, it is usually assumed
that the cyclotron gap is quite large and the electrons from
the filled lowest Landau level (with one spin-up and one
spin-down electron per orbital) do not participate in the for-
mation of the strongly correlated state. Electrons in the half-
filled second Landau level form a strongly correlated v
=1/2 incompressible state which we study here. (An alter-
native picture for the case of nonchiral states has been con-
sidered in Ref. 11).

Equation (3) implies that the electron operator in the ef-
fective theory may be written as

ho(x) = eiﬁdz(x)w(x), (4)

where W(x) describes neutral degrees of freedom. Note that
neither W(x) nor ¢/>¢ must be local fields in the field content
of the effective CFT. By Egs. (1)—(3) it is seen that i,(x) has
unit charge. The need for additional degrees of freedom de-
scribed by W(x) becomes clear if one considers the permu-
tation relation e/\2#(0ei200) = p=ibpi\20()p1\20(%)  where the
statistical parameter =27 [see Eq. (2)]. It follows that for
W=1 the operator ¢, possesses Bose statistics and hence
cannot describe an electron. Our goal is then to describe the
neutral degrees of freedom of the edge. We call a chiral CFT
“Abelian” or “non-Abelian” depending on whether its pri-
mary fields obey Abelian or non-Abelian statistics, respec-
tively. In this Brief Report we limit our analysis to two
simple cases: (1) chiral Abelian theories and (2) chiral CFTs
where the neutral sector is decoupled from the charged one
and ,(x)=¢"">%Y @ W(x), where W(x) is a primary field in a
non-Abelian CFT. In both cases we shall see that there exist
plausible theories that are in much better agreement with the
experiment than, e.g., the Pfaffian state.

Abelian theories. Chiral Abelian edge CFTs are con-
structed from a multiplet ¢=(¢;,...,¢y) of free chiral
bosons satisfying [¢;(x), ¢;(x")]=imd,; sgn(x—x") that give
rise to N conserved currents J#=(21)"'€""3,¢;. The electric
current is a linear combination J=q-J = 2,q,/;, where ¢; are
some coefficients. A general excitation is described by a ver-
tex operator

with the statistical parameter #=mv-v and the charge Q.
=q-v. If operator (5) represents an electron, 6 must be odd
and Q. =1. Imposing this condition, we find N solutions v
=e,, a=1,...,N. The theory is characterized by its K ma-
trix K,,=e,-e,, whose entries are mutual statistical phases
of electron operators. Using anomaly cancellation condition
q-q=v, one finds

QK 'Q=v, Q=(1,1,...,1). (6)

Condition (C) implies that an arbitrary excitation (5) satisfies
v-e,=n,, where n, e 7. The conformal spin and the electric
charge of such an excitation are given by

Qu(n) = QK 'n. (7

Equations (6) and (7) can be used for a complete classi-
fication of Abelian v=1/2 states. As an illustration, we dis-
cuss N=2 Abelian states and state the results for N=3. In
Ref. 10 it has been shown that, for physically interesting
states with small relative angular momentum of electrons, K
matrices can always be chosen in the form

h(n) =nK 'n,

Ly a a
a b
K= , K=la L b, (®)
b a
ay b 13

where [, =1, <1;. For N=2 fields and v=1/2 Eq. (6) reduces
to a+b=4, where a € 27+1. In such a theory the electric
charge is given by Q.,=(n;+n,)/(a+b)=(n,+n,)/4. There
are only three K matrices (with det K> 0, for the theory to be
chiral) for which the conformal spin of an electron h,
=7/2.

A complete classification of irreducible N=3 theories can
be found in Ref. 10. There are six distinct indecomposable
three-dimensional chiral lattices describing admissible v
=1/2 QHE states. The parameters of the K matrices, the
charges, and the scaling dimensions of the most relevant tun-
neling operators in all these theories [calculated using Eq.
(7)] are given in Table I. Comparing with experiment [see
Fig. 1(a)], one can see that there are two good candidate
theories, both with N=3. One of them has a minimal charge
e"'=1/8.

Non-Abelian theories. A generalization of the above con-
struction may be obtained if one replaces the Heisenberg
algebra describing the modes of free bosons with a central
extension of some Lie algebra g. The resulting theory con-
tains several non-Abelian currents J, satisfying the Kac-
Moody (KM) algebra §;,
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FIG. 1. Predictions of (a) Abelian and (b) non-Abelian theories discussed in the present work are shown on the (e*,g) plane and
compared with the (c) fit quality map from Ref. 5. Theories lying within the 3¢ contour are shown as full circles. Points corresponding to
previously discussed proposals are shown in (c). In particular, the point (1/4,1/2) in (c) corresponds to su(2), and the anti-Pfaffian states and

(1/4,1/4) to the Moore-Read state.
[J,(x).J5(0)] = 277ik 8,8 (x) + 27w 8(x) X, £5,,7.(0)
c

where f7, are the structure constants of g and k is a
parameter called the /evel. We do not attempt to explore all
such theories. Instead, we focus our attention on theories
where (a) the electric current commutes with other KM cur-
rents; (b) the electron operator is given by Eq. (4), where W
is a KM primary field; and (c) g is a simple Lie algebra. In
the following we call the corresponding CFT the neutral sec-
tor. All non-Abelian v=5/2 states proposed so far are of this
type. Unitary CFTs associated with Lie algebras are Wess-
Zumino-Witten (WZW) models or coset theories generated
from WZW models by means of the so-called Goddard-
Kent-Olive construction (see, e.g., Ref. 12). Among them are
theories based on KM algebras at level 1, which may give
rise to Abelian CFTs (see Refs. 10 and 13 for applications to
the QHE).'*

The requirement that the electron operator has Fermi sta-
tistics imposes W(x)W(y)=—W(y)W(x), i.e., the neutral sec-
tor must contain a primary field of half-integer conformal
spin. Not every such a field is, however, acceptable. Indeed,
the operator product expansion of a pair of primary fields in
the neutral sector is generally given by

)

Cop ¢ 2" 4 descendants,

ba(2) (0) = 2

where h; is the conformal dimension of the field ¢;. In gen-
eral, the dimensions /; are not commensurate. Substituting W
instead of ¢, in Eq. (9) one can see that, in order to satisfy
the locality requirement (C), the right-hand side of Eq. (9)
must contain exactly one primary field for every ¢,. In the
language of fusion rules this is expressed as WX ¢,= ¢, i.e.,
fusion with W determines a permutation on the set of pri-
mary fields. Such a primary field W is called a simple
current."> The presence of a half-integer-spin simple current
in the theory is a strong constraint.

Quasihole excitations are described by operators of the
neutral and the charged sectors as

Yn = €209 @ V(x), (10)

where ¢ is the quasihole charge and V(x) is a Virasoro pri-
mary field in the neutral sector. Substituting Egs. (4) and (10)
in Eq. (9) and imposing the locality constraint (C), one finds
that the conformal weights satisfy

(11)

An important property of spectrum of electric charges of
the edge CFT is expressed in terms of the order of the simple
current W, defined!® as the smallest integer ¢ such that W*
=I. It is shown'3 that

hWXV_hW_hV+ 2q e .

q € (tdy)'7, (12)

where dy is the Hall denominator, dy=2 in our case. The
dimension of the tunneling operator ‘ﬁgh‘ﬂqh is

g=2(hy+q?). (13)

Wess-Zumino-Witten models. One of the early proposals
for a non-Abelian neutral sector is the su(2), theory.? This
theory has a central charge ¢=3/2 and contains an SU(2)
triplet of Majorana-Weyl fermions with hy=1/2 (order €
=2 simple currents) and a doublet of quasihole excitations
with hg,=3/16. In this theory W is identified with the
Majorana-Weyl triplet. The charge of the most relevant
quasihole is e*=1/4 and the dimension of the tunneling op-
erator is g=2(3/16+1/16)=1/2. Among the theories dis-
cussed in Ref. 5 this model fits the experiment data best.

To generalize the su(2), theory, one may consider su(2) at
higher levels or different Lie algebras. With increasing level
k or rank r of g, the complexity of the CFT increases, while
the smallest dimension /4y decreases. From these observa-
tions one can deduce that only a limited number of WZW
models are plausible candidates compatible with experiment
data. This allows one to obtain all plausible WZW theories
on a case by case basis.

The interesting candidate theories obtained as a result of
this analysis are described in Table II. The smallest fractional
charge ¢* in all these theories is 1/4 Comparison with experi-
ment is shown in Fig. 1(c). The model based on sp(4), is the
simplest one and is similar to su(2), containing one multiplet
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TABLE II. The central charge ¢, the number P of KM primary fields, the conformal spin /%, of the electron
operator, and the tunneling dimension g for non-Abelian models (v=1/2).

Model SU(2)6 sp(4), $p(4)3 s0(7),/5u(2), (Gy),/5u(2),
c 9/4 52 5 5/2 19/6

P 7 3 10 6 12

h, 52 3/2 5/2 3/2 3/2

g 5/16 3/4 13/24 172 5/12

of electrons and one of quasiholes. It, however, predicts too
large a value of g. The best fit to the experiment corresponds
to sp(4)s.

Coset models. A much bigger class of conformal field
theories (all known rational unitary CFTs) is obtained via the
GKO coset construction. For example, the Moore-Read
state? is associated with the coset su(2), ®su(2),/su(2), de-
scribing the chiral sector of the critical Ising model. An ex-
haustive analysis of the possibilities offered by the coset con-
struction is the subject of future work. Here, we discuss some
simple examples.

(a) Virasoro minimal models. These form an infinite series
of CFTs associated with the cosets su(2); ®su(2),/su(2);,,.
The properties of these models, which exhaust all unitary
CFTs with central charge ¢ <1, are described in the literature
in great detail. For k=4m—3 and k=4m—2, where m € 7 the
model contains an order 2 fermion simple current, identified
with W. Its conformal spin grows rapidly with m and be-
comes 15/2 already for m=2, so that theories with m>2 are
implausible from the point of view of stability. For all mod-
els in the series one finds the minimal charge ¢*=1/4 and the
dimension g of the most relevant tunneling operator is mono-
tonically decreasing from g=1/4 to g=1/8 [solid line in Fig.
1(b)]. Thus, in this series the Moore-Read state gives the best
fit to the experiment and is preferred from the point of view
of stability.

(b) Another interesting class of coset models with ¢=1
are super-Virasoro minimal models. Due to supersymmetry a
simple current with a conformal weight of 3/2 is present in

the spectrum. In this series e*=1/4. The dimensions g of the
most relevant tunneling operators lie between g=59/280 and
g=1/8 [solid line in Fig. 1(b)].

(c) As examples of more general coset models we men-
tion here 50(7),/5u(2), and (G,),/su(2), [see Fig. 1(b) and
Table II].

In conclusion, combining the fundamental requirements
(A)-(C) with bounds imposed by the experiment’ we have
shown that there is a limited number of chiral conformal
field theories that may serve as effective-field theories for the
v=>5/2 edge [see Figs. 1(b) and 1(c)]. Some of these theories
have not been previously discussed. Intriguingly, there exist
both Abelian and non-Abelian states with exactly the same
values for e* and g as the Pfaffian, anti-Pfaffian, and su(2),
states discussed in Ref. 5. Thus, it is impossible to distin-
guish between these states and, in particular, reveal their
non-Abelian nature based on the tunneling data of Ref. 5
only. The ambiguity might be resolved with the help of fur-
ther experimental data. In particular, information on the tun-
neling density of states of electrons'® would set bounds on
the maximal value of the conformal spin of the electron,
noise measurements!’” might be used to verify the theory pre-
dicting a minimal charge of 1/8, Aharonov-Bohm interferom-
etry might be used to detect conformal dimensions of differ-
ent excitations,'® and the multiplicity of electron operator
could be measured in the setup of Ref. 19.

We thank 1. Radu for providing experimental data and O.
Ruchayskiy and R. Morf for valuable discussions.
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